Systematic review of literature: exploitation of information and GIS technologies applied to identify criminal patterns
Published 2019-06-01
Keywords
- Systematic literature review,
- Information Exploitation,
- Data mining,
- GIS,
- Criminal proceedings
How to Cite
Abstract
The systematic review of literature (SLR) is an article which synthesizes the available evidence around certain research questions, addresses quantitative and qualitative aspects of primary studies with the purpose of summarizing existing information on a particular topic. A systematic review of the literature on the integration of information exploitation processes with GIS technologies is presented, and it evaluates their application for the discovery of criminal patterns. The construction of this SRL is based on the method proposed by Kitchenham. The results are presented by considering the three stages of the method in which the selected primary studies are explained in relation to the research questions that guide the study. The findings show the scarce application of the integration of both technologies as a strategy to reduce criminal risks.
URI:Â http://hdl.handle.net/11298/972
DOI:Â https://doi.org/10.5377/entorno.v0i67.7489
Keywords: Systematic literature review, Information Exploitation, Data mining, GIS, Criminal proceedings.
References
Allred, B. J., Daniels, J. J., & Ehsani, M. R. (2008). Integration of geographic systems (GISS) with agricultural geophysics. En C. J. Merry (Ed.), Handbook of agricultural geophysics. (199-208). New York: CRC Press, Taylor & Francis Group.
Benet RodrÃguez, M., Zafra, S. L., & Quintero Ortega, S. P. (2015). La revisión sistemática de la literatura cientÃfca y la necesidad de visualizar los resultados de las investigaciones. Revista Logos, Ciencia & TecnologÃa. Recuperado de https://www.redalyc.org/articulo. oa?id=517751487013
Bernhardsen, T. (2002). Geographic information systems: an introduction (3ª ed.). New York, United States: John Wiley & Sons.
Britos, P. (2008). Procesos de explotación de información basados en sistemas inteligentes. (Tesis de doctorado). Universidad Nacional de La Plata, Buenos Aires, ARG.
Britos, P., Fernández, E., Merlino, H., Pollo Cataneo, F., RodrÃguez, D., Procopio, C., & GarcÃa MartÃnez, R. (2008). Explotación de información aplicada a inteligencia criminal en Argentina. [Versión de Adobe Acrobat Reader]. Recuperado de http://sedici.unlp.edu.ar/bitstream/handle/10915/21890/D
ocumento_completo.pdf?sequence=1&isAllowed=y
Chen, H., Chung, W., Xu, J. J., Wang, G., Qin, Y. & Chau, M. (2004). Crime data mining: a general framework and some examples. Computer. 37(4), 50-56. doi: 10.1109/ MC.2004.1297301
Fayyad, U., Piatetsky Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine. 17(3), 39-54.
Ferreira, J. E., Takai, O. K., & Pu, C. (2005). Integration of business processes with autonomous information systems: a case study in government services. IEEE. (7). doi: 10.1109/ICECT.2005.56
Frawley, W. J., Piatetsky Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: an overview. AI Magazine. 13(5), 58-70.
GarcÃa MartÃnez, R., Britos, P., Pesado, P., Bertone, R., Pollo Cattaneo, F., RodrÃguez, D., & Vanrell, J. (2011). Towards an information mining engineering. Software Engineering: Methods, Modeling and Teaching. 83-99.
Gisbert, J., & Bonfll, X. (2004). ¿Cómo realizar, evaluar y utilizar revisiones sistemáticas y metaanálisis?. GastroenterologÃa y HepatologÃa. 27(3), 129-149. doi: 10.1016/S0210-5705(03)79110-9
Hann, I., Hui, K., Lee, S. T., & Png, I. P. L. (2007). Analyzing online information privacy concerns: an information processing theory approach. IEEE. 210-219.
Kitchenham, B. (2004). Procedures for performing systematic reviews [versión de Adobe Acrobat Reader]. Recuperado de http://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf
Perversi, I., Valenga, F., Fernández, E., Britos, P. V., & GarcÃa MartÃnez, R. (2007). Identifcación y detección de patrones delictivos basada en minerÃa de datos [versión de Adobe Acrobat Reader]. Recuperado de http://laboratorios.f.uba.ar/lsi/WICC-07-385-389.pdf
Tillekens, A., Le Khac, N. A., & Thi, T. T. P. (2016). A bespoke forensics GIS tool. IEEE. 1, 1-2. doi: 10.1109/CSCI.2016.0189
Valenga, F., Perversi, I., Fernández, E., Merlino, H., RodrÃguez, D., Britos, P., & GarcÃa MartÃnez, R. (2007). Aplicación de minerÃa de datos para la exploración y detección de patrones delictivos en Argentina. Recuperado de http://sedici.unlp.edu.ar /handle/10915/21783